您当前的位置: > 详细浏览

大语言模型时代的语言学研究新机遇-以歧义分析为例

请选择邀稿期刊:

New Possibilities for Linguistic Research in the Era of Large Language Models

摘要: 以GPT系列为代表的大规模预训练语言模型的快速发展,深刻改变了自然语言处理领域的科研与工程范式,对医疗、教育、司法、金融等相关领域产生了深远影响。同时,这也为语言本身的研究带来了一些新的可能性。本文从歧义分析出发,简要评估GPT4、百川2、ChatGLM3等模型对以歧义为代表的复杂语言现象的理解和分析能力。实验结果表明,GPT4可以融合歧义消解和句法分析等方法,有效感知和理解复杂的语言现象。对于百川2,我们可以通过提示词工程引导其对语言现象进行深入思考,在不进行参数优化时,提升其分析能力。此外,通过监测大模型在处理不同语言现象时的内部特征与神经元活动,可以直观展现语言现象与大模型之间的关系。实验结果表明,大语言模型可以辅助人类更好地理解语言的本质,揭示语言现象深层次规律,从而为语言学研究提供新的思路。

Abstract: The research and engineering paradigm of natural language processing has been shifted with the rapid development of large languages models represented by the GPT series. It makes a significant impact on the related fields such as healthcare, education, judiciary and finance. At the same time, it also brings new possibilities for linguistics, the study of language itself. In this paper, we employ GPT4, Baichuan2 as well as ChatGLM3 and investigate their abilities of analyzing complex linguistic phenomena, taking ambiguity as an example. The experimental results show that GPT4 can effectively perceive and understand complex linguistic phenomena by integrating ambiguity resolution and syntactic analysis. For Baichuan2, if it is guided properly via prompt engineering, its analytical ability can be improved without parameter optimization. In addition, the relationship between linguistic phenomena and large language models can be visually demonstrated by monitoring the internal features and neuron activities of the models when processing ambiguous sentences in different context. In general, our experiments indicate that large language models are beneficial to better understanding the analyzing complex linguistic phenomena, hence providing new alternatives for linguistic research.

版本历史

[V2] 2024-01-11 11:09:43 ChinaXiv:202401.00173V2 下载全文
[V1] 2024-01-11 10:26:29 ChinaXiv:202401.00173v1 查看此版本 下载全文
点击下载全文
预览
同行评议状态
待评议
许可声明
metrics指标
  •  点击量377
  •  下载量36
评论
分享
申请专家评阅